Monday, October 3, 2016

Bereken Eksponensiële Bewegende Gemiddelde In Excel

Bewegende gemiddelde Hierdie voorbeeld leer jy hoe om die bewegende gemiddelde van 'n tydreeks in Excel te bereken. 'N bewegende avearge gebruik te stryk onreëlmatighede (pieke en dale) om maklik tendense herken. 1. In die eerste plek kan 'n blik op ons tyd reeks. 2. Klik op die blad Data, kliek Data-analise. Nota: cant vind die Data-analise knoppie Klik hier om die analise ToolPak add-in te laai. 3. Kies bewegende gemiddelde en klik op OK. 4. Klik op die insette Range boks en kies die reeks B2: M2. 5. Klik op die boks interval en tik 6. 6. Klik in die uitset Range boks en kies sel B3. 8. Teken 'n grafiek van hierdie waardes. Verduideliking: omdat ons die interval stel om 6, die bewegende gemiddelde is die gemiddeld van die vorige 5 datapunte en die huidige data punt. As gevolg hiervan, is pieke en dale stryk uit. Die grafiek toon 'n toenemende tendens. Excel kan nie bereken die bewegende gemiddelde vir die eerste 5 datapunte, want daar is nie genoeg vorige datapunte. 9. Herhaal stappe 2 tot 8 vir interval 2 en interval 4. Gevolgtrekking: Hoe groter die interval, hoe meer die pieke en dale is glad nie. Hoe kleiner die interval, hoe nader die bewegende gemiddeldes is om die werklike data punte. Hou jy van hierdie gratis webwerf Deel asseblief hierdie bladsy op GoogleCalculating bewegende gemiddelde in Excel In hierdie kort handleiding sal jy leer hoe om 'n eenvoudige bewegende gemiddelde in Excel vinnig te bereken, wat funksies te gebruik om bewegende gemiddelde vir die laaste N dae kry, weke , maande of jare, en hoe om 'n bewegende gemiddelde tendenslyn te voeg tot 'n Excel grafiek. In 'n paar onlangse artikels, het ons 'n vinnige blik op die berekening van die gemiddelde in Excel geneem. As jy het al die volg van ons blog, jy reeds weet hoe om 'n normale gemiddelde te bereken en watter funksies te gebruik om geweegde gemiddelde vind. In vandag se handleiding, sal ons twee basiese tegnieke bespreek om te bereken bewegende gemiddelde in Excel. Wat is bewegende gemiddelde algemeen bewegende gemiddelde (ook na verwys as rollende gemiddelde. Hardloop gemiddelde of bewegende gemiddelde) kan gedefinieer word as 'n reeks van gemiddeldes vir verskillende onderafdelings van dieselfde datastel. Dit word dikwels gebruik in statistiek, seisoenaal-aangepaste ekonomiese en weervoorspelling om onderliggende tendense verstaan. In-beurs, bewegende gemiddelde is 'n aanduiding dat die gemiddelde waarde van 'n sekuriteit oor 'n gegewe tydperk toon. In besigheid, sy 'n algemene praktyk om 'n bewegende gemiddelde van verkope te bereken vir die laaste 3 maande om te bepaal die onlangse tendens. Byvoorbeeld, kan die bewegende gemiddelde van drie maande temperature word bereken deur die gemiddeld van temperature van Januarie tot Maart, dan is die gemiddelde temperatuur vanaf Februarie tot April, dan Maart tot Mei, en so aan. Daar bestaan ​​verskillende tipes bewegende gemiddelde soos eenvoudige (ook bekend as rekenkundige), eksponensiële, veranderlike, driehoekige, en geweeg. In hierdie handleiding, sal ons kyk na die mees algemeen gebruik word eenvoudig bewegende gemiddelde. Berekening van eenvoudige bewegende gemiddelde in Excel Algehele, is daar twee maniere om 'n eenvoudige bewegende gemiddelde te kry in Excel - deur die gebruik van formules en tendenslyn opsies. Die volgende voorbeelde te demonstreer sowel tegnieke. Voorbeeld 1. Bereken bewegende gemiddelde vir 'n sekere tydperk 'n Eenvoudige bewegende gemiddelde kan in geen tyd met 'n gemiddelde funksie bereken. Veronderstel jy het 'n lys van die gemiddelde maandelikse temperature in kolom B, en jy wil 'n bewegende gemiddelde vir 3 maande vind (soos in die beeld hierbo). Skryf 'n gewone gemiddelde formule vir die eerste 3 waardes en insette dit in die ry wat ooreenstem met die 3de waarde van die top (sel C4 in hierdie voorbeeld), en dan die formule kopieer na ander selle in die kolom: Jy kan regmaak die kolom met 'n absolute verwysing (soos B2) as jy wil, maar seker wees om relatiewe ry verwysings (sonder die teken) gebruik sodat die formule pas behoorlik vir ander selle. Onthou dat 'n gemiddelde word bereken deur die toevoeging van waardes en dan verdeel die som deur die aantal waardes te gemiddeld, kan jy die resultaat te verifieer deur die gebruik van die sommeskadeleer: Voorbeeld 2. Kry bewegende gemiddelde vir 'n die laaste N dae / weke / maande / jare in 'n kolom Veronderstel jy het 'n lys van data, bv verkoop figure of voorraadkwotasies, en jy wil die gemiddelde van die afgelope 3 maande op enige punt van die tyd weet. Vir hierdie, 'n formule wat die gemiddelde so gou sal herbereken as jy nie 'n waarde vir die volgende maand te betree wat jy nodig het. Wat Excel-funksie in staat is om dit te doen die goeie ou gemiddeld in kombinasie met verreken en te tel. GEMIDDELDE (sprong (eerste seltelling (hele reeks) -. N, 0, N, 1)) waar n die aantal van die laaste dae / weke / maande / jare in die gemiddelde in te sluit. Nie seker hoe om hierdie bewegende gemiddelde formule te gebruik in jou werkbladen Die volgende voorbeeld sal dinge duideliker te maak. Die veronderstelling dat die waardes te gemiddeld is in kolom B begin in ry 2, die formule soos volg sal wees: En nou, Kom ons probeer om te verstaan ​​wat hierdie Excel bewegende gemiddelde formule is eintlik doen. Die telling funksie COUNT (B2: B100) tel hoeveel waardes reeds in kolom B. ingeskryf Ons begin tel in B2 omdat ry 1 is die kolomkop. Die afset funksie neem sel B2 (die 1ste argument) as die beginpunt, en neutraliseer die telling (die waarde wat deur die telling funksie) deur die verskuiwing van 3 rye up (-3 in die 2de argument). As gevolg, dit gee terug Die Som van waardes in 'n reeks wat bestaan ​​uit 3 rye (3 in die 4de argument) en 1 kolom (1 in die laaste argument), wat is die jongste 3 maande wat ons wil hê. Ten slotte, is die teruggekeer som geslaag om die GEMIDDELDE funksie om die bewegende gemiddelde te bereken. Tip. As jy besig is met voortdurend updatable werkvelle waar nuwe rye is geneig om te word bygevoeg in die toekoms, is seker 'n voldoende aantal rye te voorsien aan die telling funksie om potensiële nuwe inskrywings te akkommodeer. Dit is nie 'n probleem as jy sluit meer rye as eintlik nodig solank jy die eerste sel reg, die telling funksie sal al leë rye in elk geval weggooi. As jy dalk opgemerk het, die tafel in hierdie voorbeeld bevat data vir slegs 12 maande, en nog die reeks B2: B100 verskaf tel, net om te wees op die red kant :) Voorbeeld 3. Kry bewegende gemiddelde vir die laaste N waardes in 'n ry as jy wil 'n bewegende gemiddelde vir die laaste n dae, maande, jare, ens in dieselfde ry te bereken, kan jy die Offset formule aan te pas op hierdie manier: Veronderstel B2 is die eerste getal in die ry, en jy wil om die laaste 3 nommers in die gemiddelde sluit, die formule neem die volgende vorm: die skep van 'n Excel bewegende gemiddelde grafiek As jy reeds 'n grafiek geskep vir jou data, en voeg 'n bewegende gemiddelde tendenslyn vir daardie term is 'n kwessie van sekondes. Vir hierdie, gaan ons gebruik Excel Trendline funksie en die gedetailleerde stappe volg hieronder. Vir hierdie voorbeeld, Ive het 'n 2-D grafiek kolom (Voeg blad GT Charts groep) vir ons verkope data: En nou, ons wil hê dat die bewegende gemiddelde visualiseer vir 3 maande. In Excel 2010 en Excel 2007, gaan aan die uitleg GT Trendline GT Meer Trendline Options. Tip. As jy nie nodig het om die besonderhede soos die bewegende gemiddelde interval of name spesifiseer, kan jy kliek Design GT Voeg Chart Element GT Trendline GT bewegende gemiddelde vir die onmiddellike gevolg. Die paneel formaat Trendline sal open op die regterkant van jou werkblad in Excel 2013, en die ooreenstemmende dialoog sal pop-up in Excel 2010 en 2007.To verfyn jou chat, kan jy op oorskakel na die vul amp Line of blad Effects die paneel formaat Trendline en speel met verskillende opsies soos tipe lyn, kleur, breedte, ens vir kragtige data-analise, wil jy dalk 'n paar bewegende gemiddelde trendlines voeg met verskillende tydintervalle om te sien hoe die tendens ontwikkel. Die volgende kiekie toon die 2 maande (groen) en 3 maande (baksteenrooi) bewegende gemiddelde trendlines: Wel, dis alles oor die berekening van bewegende gemiddelde in Excel. Die monster werkblad met die bewegende gemiddelde formules en tendenslyn is beskikbaar vir aflaai - Moving Gemiddelde sigblad. Ek dank u vir die lees en sien uit daarna om te sien hoe jy volgende week Jy kan ook geïnteresseerd in: Hoe om EMO Bereken in Excel Leer hoe om die eksponensiële bewegende gemiddelde in Excel en VBA bereken, en kry 'n gratis web-verbind sigblad. Die sigblad gekry voorraad data van Yahoo Finansies, bereken EMO (oor jou gekose tyd venster) en intrige van die resultate. Die aflaai skakel is aan die onderkant. Die VBA kan besigtig word en geredigeer it8217s heeltemal gratis. Maar eers disover waarom EMO is belangrik om tegniese handelaars en markanaliste. Historiese aandele prys kaarte is dikwels besoedel met 'n baie hoë frekwensie geraas. Dit bedek dikwels groot tendense. Bewegende gemiddeldes te help gladde uit hierdie geringe fluktuasies, gee jou 'n groter insig in die algehele mark rigting. Die eksponensiële bewegende gemiddelde plekke groter belang op meer onlangse data. Hoe groter die tydperk, hoe laer is die belangrikheid van die mees onlangse data. EMO word gedefinieer deur die vergelyking. today8217s prys (vermenigvuldig met 'n gewig) en yesterday8217s EMO (vermenigvuldig met 1-gewig) Jy moet die EMO berekening met 'n aanvanklike EMO (EMO 0) kickstart. Dit is gewoonlik 'n eenvoudige bewegende gemiddelde lengte T. Die grafiek hierbo, byvoorbeeld, gee die EMO van Microsoft tussen 1 Januarie 2013 en 14 Januarie 2014 Tegniese handelaars dikwels die cross-over van twee bewegende gemiddeldes 8211 een gebruik met 'n kort tydskaal en 'n ander met 'n lang tydskaal 8211 tot koop / verkoop seine op te wek. Dikwels 12- en 26-dae - bewegende gemiddeldes gebruik. Wanneer die korter bewegende gemiddelde styg bo die meer bewegende gemiddelde, die mark is trending updwards dit is 'n koopsein. Maar wanneer die korter bewegende gemiddeldes val onder die lang bewegende gemiddelde, die mark val dit 'n sell sein. Let8217s eers leer hoe om EMO bereken met behulp van werkblad funksies. Daarna we8217ll ontdek hoe om VBA gebruik om EMO bereken (en outomaties plot kaarte) Bereken EMO in Excel met Werkkaart Funksies Stap 1. Let8217s sê dat ons wil hê dat die 12-dag EMO van Exxon Mobil8217s aandele prys te bereken. Eerstens moet ons historiese aandele pryse 8211 kry jy dat hierdie grootmaat voorraad kwotasie Downloader doen. Stap 2. Bereken die eenvoudige gemiddelde van die eerste 12 pryse met Excel8217s Gemiddeld () funksie. In die onderstaande Screengrab, in sel C16 het ons die formule GEMIDDELDE (B5: B16) waar B5: B16 bevat die eerste 12 naby pryse Stap 3. Net onder die sel wat in Stap 2, tik die EMO formule hierbo Daar het jy dit You8217ve suksesvol bereken 'n belangrike tegniese aanwyser, EMO, in 'n sigblad. Bereken EMO met VBA Nou let8217s meganiseer die berekeninge met VBA, insluitend die outomatiese skepping van erwe. Ek won8217t jou die volle VBA hier (it8217s beskikbaar in die onderstaande sigblad), maar we8217ll die mees kritieke kode bespreek. Stap 1. Aflaai historiese voorraadkwotasies vir jou ENKELE van Yahoo Finansies (met behulp van CSV lêers), en laai dit in Excel of die VBA gebruik in hierdie sigblad om historiese kwotasies te kry reguit in Excel. Stap 2: Jou data kan soos volg lyk. Dit is hier waar ons nodig het om 'n paar braincells 8211 wat ons nodig het om die EMO vergelyking in VBA implementeer oefen. Ons kan R1C1 styl gebruik om programatically betree formules in individuele selle. Ondersoek die kode hieronder snippet. EMAWindow is 'n veranderlike wat die vereiste tyd venster numRows gelyk is die totale aantal datapunte 1 (die 8220 18221 is omdat we8217re die veronderstelling dat die werklike voorraad data begin ry 2) die EMO word bereken in kolom H veronderstelling dat EMAWindow 5 en numrows 100 (dit wil sê, daar is 99 datapunte) die eerste reël plaas 'n formule in sel H6 dat die rekenkundige gemiddelde van die eerste 5 historiese data punte die tweede reël plaas formules in selle H7 bereken: H100 dat die EMO van bereken die oorblywende 95 datapunte Stap 3 Hierdie VBA funksie skep 'n plot van die beslote prys en EMO. Groot taak op kaarte en verduidelikings. Ek het 'n vraag though. As ek die begindatum tot 'n jaar later verander en kyk na onlangse EMO data, is dit opvallend anders as wanneer ek gebruik dieselfde EMO tydperk met 'n vroeëre aanvang van die datum vir dieselfde onlangse datum verwysing. Is dit wat jy verwag. Dit maak dit moeilik om te kyk na gepubliseerde kaarte met EMA getoon en dieselfde grafiek nie sien nie. Shivashish Sarkar sê: Hi, ek gebruik jou EMO sakrekenaar en ek dit baie waardeer. Ek het egter opgemerk dat die sakrekenaar is nie in staat om die grafieke te plot vir alle maatskappye (dit wys Run tyd fout 1004). Kan jy asseblief skep 'n updated weergawe van jou sakrekenaar waarin nuwe maatskappye sal ingesluit Laat 'n antwoord Kanselleer antwoord Soos die Vrystaat Spreadsheets Meester Knowledge Base Onlangse PostsExponential Smoothing verduidelik word. kopie Kopiereg. Die inhoud van InventoryOps is kopiereg beskerm en is nie beskikbaar vir herdruk. Wanneer mense eers die term Eksponensiële Smoothing teëkom kan hulle dink dit klink soos 'n hel van 'n baie glad. alles glad is. Hulle het toe begin om 'n ingewikkelde wiskundige berekening wat waarskynlik vereis 'n graad in wiskunde te verstaan ​​voor oë, en ek hoop daar is 'n ingeboude EXCEL funksie beskikbaar indien hulle ooit nodig het om dit te doen. Die realiteit van eksponensiële gladstryking is veel minder dramatiese en baie minder traumaties. Die waarheid is, eksponensiële gladstryking is 'n baie eenvoudige berekening wat 'n redelik eenvoudige taak accomplishes. Dit het net 'n ingewikkelde naam want wat tegnies gebeur as gevolg van hierdie eenvoudige berekening is eintlik 'n bietjie ingewikkeld. Om eksponensiële gladstryking verstaan, help dit om te begin met die algemene konsep van glad en 'n paar ander algemene metodes wat gebruik word om glad te bereik. Wat is glad Smoothing is 'n baie algemene statistiese proses. Trouens, ons gereeld reëlmatige data in verskeie vorme in ons dag-tot-dag lewe teëkom. Enige tyd wat jy 'n gemiddelde gebruik om iets te beskryf, gebruik jy 'n reëlmatige nommer. As jy dink oor die rede waarom jy 'n gemiddelde gebruik om iets te beskryf, sal jy vinnig verstaan ​​die konsep van gladstryking. Byvoorbeeld, ons het net ervaar die warmste winter op rekord. Hoe is ons in staat was om te kwantifiseer hierdie Wel ons begin met datastelle van die daaglikse hoë en lae temperature vir die tydperk wat ons Winter bel vir elke jaar in die geskiedenis. Maar dit laat ons met 'n klomp van die nommers wat spring om nogal 'n bietjie (sy nie soos elke dag hierdie winter was warmer as die ooreenstemmende dae vanaf alle vorige jaar). Ons moet 'n getal wat al hierdie spring rond verwyder uit die data, sodat ons kan makliker vergelyk een winter na die volgende. Die verwydering van die spring rond in die data heet glad, en in hierdie geval kan ons net gebruik om 'n eenvoudige gemiddelde tot die smoothing bereik. In vraag vooruitskatting, gebruik ons ​​glad ewekansige variasie (geraas) van ons historiese vraag te verwyder. Dit stel ons in staat om die vraag patrone (hoofsaaklik tendens en seisoenaliteit) en vlakke vraag wat gebruik kan word om toekomstige vraag te skat beter te identifiseer. Die geraas in die vraag is dieselfde konsep as die daaglikse spring rond van die temperatuur data. Nie verrassend nie, die mees algemene manier waarop mense verwyder geraas uit die geskiedenis vraag is om 'n eenvoudige averageor meer spesifiek gebruik, 'n bewegende gemiddelde. 'N bewegende gemiddelde net gebruik 'n vooraf gedefinieerde aantal periodes om die gemiddelde te bereken, en diegene periodes beweeg met verloop van tyd. Byvoorbeeld, as Im met behulp van 'n 4-maand bewegende gemiddelde, en vandag is 1 Mei, Im met behulp van 'n gemiddeld van vraag wat plaasgevind het in Januarie, Februarie, Maart en April. Op 1 Junie sal ek wees met behulp van die vraag vanaf Februarie, Maart, April en Mei. Geweegde bewegende gemiddelde. By die gebruik van 'n gemiddelde ons aansoek doen dieselfde belangrikheid (gewig) aan elke waarde in die datastel. In die 4-maand bewegende gemiddelde, elke maand verteenwoordig 25 van die bewegende gemiddelde. By die gebruik van die geskiedenis vraag na die toekomstige vraag (en veral toekomstige tendens) - projek, sy logiese om tot die gevolgtrekking gekom dat jy wil graag meer onlangse geskiedenis 'n groter impak op jou voorspelling het gekom. Ons kan ons bewegende gemiddelde berekening te pas by verskillende gewigte van toepassing op elke tydperk aan ons gewenste resultate te kry. Ons spreek hierdie gewigte as persentasies, en die totaal van alle gewigte vir alle tye moet tot 100. Daarom voeg, as ons besluit ons wil aansoek doen 35 as die gewig vir die naaste tydperk in ons 4 maande geweeg bewegende gemiddelde, ons kan aftrek 35 van 100 om uit te vind ons het 65 oorblywende om verdeeld oor die ander 3 periodes. Byvoorbeeld, kan ons uiteindelik met 'n gewig van 15, 20, 30, en 35 onderskeidelik vir die 4 maande (15 20 30 35 100). Eksponensiële gladstryking. As ons teruggaan na die konsep van die toepassing van 'n gewig aan die mees onlangse tydperk (soos 35 in die vorige voorbeeld) en die verspreiding van die oorblywende gewig (bereken deur die mees onlangse tydperk gewig van 35 uit 100 te kry 65), het ons die basiese boustene vir ons eksponensiële gladstryking berekening. Die beheer van insette van die eksponensiële gladstryking berekening staan ​​bekend as die smoothing faktor (ook bekend as die glad konstante). Dit verteenwoordig in wese die toepassing op die mees onlangse vraag tydperke gewig. So, waar ons gebruik 35 as die gewig vir die mees onlangse tydperk in die geweegde bewegende gemiddelde berekening, kan ons ook kies om te gebruik 35 as die glad faktor in ons eksponensiële gladstryking berekening om 'n soortgelyke effek te kry. Die verskil met die eksponensiële gladstryking berekening is dat in plaas van ons om te ook uit te vind hoeveel gewig om aansoek te doen om elke vorige tydperk, die smoothing faktor is wat gebruik word om dit outomaties te doen. So hier kom die eksponensiële deel. As ons gebruik 35 as die glad faktor, sal die gewig van die mees onlangse vraag tydperke wees 35. Die gewig van die volgende mees onlangse vraag tydperke (die tydperk voor die mees onlangse) sal wees 65 van 35 (65 kom van aftrekking 35 van 100). Dit is gelykstaande aan 22,75 gewig vir daardie tydperk as jy die wiskunde te doen. Die volgende mees onlangse vraag tydperke sal wees 65 van 65 van 35, wat gelykstaande is aan 14,79. Die tydperk voor daardie gelaai sal word as 65 van 65 van 65 van 35, wat gelykstaande is aan 9,61, en so aan. En dit gaan oor terug deur al jou vorige tydperke al die pad terug na die begin van tyd (of die punt waar jy begin het met behulp van eksponensiële gladstryking vir daardie spesifieke item). Julle waarskynlik dink dis lyk soos 'n hele klomp van die wiskunde. Maar die skoonheid van die eksponensiële gladstryking berekening is dat eerder as om te herbereken teen mekaar vorige tydperk elke keer as jy 'n nuwe tydperke vraag te kry, moet jy eenvoudig die opbrengs van die eksponensiële gladstryking berekening gebruik van die vorige tydperk tot alle vorige tydperke verteenwoordig. Is jy verward nog Dit sal meer sin maak as ons kyk na die werklike berekening Tipies verwys ons na die uitset van die eksponensiële gladstryking berekening as die volgende tydperk skatting. In werklikheid, die uiteindelike voorspelling moet 'n bietjie meer werk nie, maar vir die doeleindes van hierdie spesifieke berekening, sal ons daarna verwys as die skatting. Die eksponensiële gladstryking berekening is soos volg: Die mees onlangse tye vra om 'vermenigvuldig met die smoothing faktor. PLUS Die mees onlangse tye voorspel vermenigvuldig met (een minus die smoothing faktor). D mees onlangse tydperke eis S die glad faktor wat in desimale vorm (so 35 sal verteenwoordig as 0.35). F die mees onlangse tye voorspel (die opbrengs van die smoothing berekening van die vorige tydperk). OF (met die aanvaarding 'n glad faktor van 0.35) (D 0.35) (F 0,65) Dit nie die geval kry baie makliker as dit. Soos jy kan sien, al wat ons nodig het vir data insette hier is die mees onlangse tydperke vraag en die mees onlangse tye voorspel. Ons pas die smoothing faktor (gewig) tot die mees onlangse tye op dieselfde manier sou ons in die geweegde bewegende gemiddelde berekening te eis. Ons het toe pas die oorblywende gewig (1 minus die smoothing faktor) om die mees onlangse tye voorspel. Sedert die mees onlangse tye voorspel is gemaak op grond van die vorige tydperke vraag en die vorige tydperke voorspel, wat gebaseer was op die vraag na die tydperk voor daardie en die voorspelling vir die tydperk voor dit, wat gebaseer was op die vraag na die tydperk voor dat en die voorspelling vir die tydperk voor dit, wat gebaseer is op die tydperk voor daardie. Wel, kan jy sien hoe alle vorige tydperke vraag word in die berekening sonder om werklik terug te gaan en iets herbereken. En dis wat gery die aanvanklike gewildheid van eksponensiële gladstryking. Dit was nie omdat dit nie 'n beter werk van glad as geweegde bewegende gemiddelde, was dit omdat dit makliker om te bereken in 'n rekenaarprogram was. En, omdat jy didnt nodig om te dink oor wat gewig te vorige tydperke of hoeveel vorige tydperke te gebruik gee, soos jy sou in geweegde bewegende gemiddelde. En, omdat dit net geklink koeler as geweegde bewegende gemiddelde. Trouens, dit kan aangevoer word dat geweegde bewegende gemiddelde bied groter buigsaamheid want jy het meer beheer oor die gewig van vorige tydperke. Die realiteit is een van hierdie kan gerespekteerde resultate lewer nie, so hoekom nie saam met makliker en koeler klinkende. Eksponensiële Smoothing in Excel Kom ons kyk hoe dit eintlik sou lyk in 'n sigblad met werklike data. kopie Kopiereg. Die inhoud van InventoryOps is kopiereg beskerm en is nie beskikbaar vir herdruk. In Figuur 1A, ons het 'n Excel spreiblad met 11 weke van die vraag, en 'n eksponensieel stryk voorspelling bereken vanaf daardie vraag. Ive gebruik 'n glad faktor van 25 (0.25 in sel C1). Die huidige aktiewe sel is Cell M4 wat die voorspelling vir week 12. Jy kan sien in die formule bar, die formule is (L3C1) (L4 (1-C1)) bevat. Dus is die enigste direkte insette tot hierdie berekening is die vorige tydperke vraag (Cell V3), die vorige tydperke voorspel (Cell L4), en die smoothing faktor (Cell C1, getoon as absolute selverwysing C1). Wanneer ons begin 'n eksponensiële gladstryking berekening, moet ons die waarde hand prop vir die 1ste skatting. So in Cell B4, eerder as om 'n formule, ons het net getik in die vraag van wat in dieselfde tydperk as die skatting. In Cell C4 het ons 1 eksponensiële gladstryking berekening (B3C1) (B4 (1-C1)). Ons kan dan kopieer Cell C4 en plak dit in die selle D4 deur M4 om die res van ons vooruitskatting selle te vul. Jy kan nou dubbel-kliek op 'n voorspelling sel om te sien dit is gebaseer op die vorige tydperke voorspel sel en die vorige tydperke te eis sel. So elke daaropvolgende eksponensiële gladstryking berekening erf die uitset van die vorige eksponensiële gladstryking berekening. Dis hoe elke vorige tydperke vraag word in die mees onlangse berekening tydperke alhoewel dit berekening diegene vorige tydperke nie direk verwys. As jy wil fancy te kry, kan jy uitblink spoor presedente funksie gebruik. Om dit te doen, klik op Cell M4, dan op die lint nutsbalk (Excel 2007 of 2010) op die blad Formules, kliek Trace Presedente. Dit sal connector lyne te vestig op die 1ste vlak van presedente, maar as jy hou kliek Trace Presedente sal dit connector lyne om alle vorige tydperke te trek om jou te wys die geërf verhoudings. Nou kan sien wat eksponensiële gladstryking vir ons gedoen het. Figuur 1 B toon 'n grafiek van ons eis en skatting. Jy geval sien hoe die eksponensieel stryk voorspelling verwyder die meeste van die jaggedness (die spring rond) van die weeklikse vraag, maar steeds daarin slaag om te volg wat lyk na 'n opwaartse neiging in die vraag wees. Jy sal ook agterkom dat die reëlmatige voorspelling lyn geneig laer as die vraag lyn te wees. Dit staan ​​bekend as tendens lag en is 'n newe-effek van die smoothing proses. Enige tyd wat jy glad gebruik wanneer 'n tendens teenwoordig is jou voorspelling sal agter die tendens. Dit is waar vir enige glad tegniek. Trouens, as ons hierdie sigblad voort en begin skryf laer vraag nommers ( 'n afwaartse neiging) jy sou die vraag lyn val, en die tendens lyn skuif bo dit voor die aanvang van die afwaartse neiging volg sien. Dis hoekom ek voorheen genoem die uitset van die eksponensiële gladstryking berekening dat ons 'n voorspelling te roep, moet nog 'n paar meer werk. Daar is 'n baie meer om vooruitskatting as net glad uit die knoppe in aanvraag. Ons moet bykomende aanpassings vir dinge soos tendens lag, seisoenaliteit, bekend gebeure wat die vraag, ens kan bewerkstellig Maar alles wat buite die bestek van hierdie artikel maak. Jy sal waarskynlik ook loop in terme soos dubbel-eksponensiële gladstryking en trippel-eksponensiële gladstryking. Hierdie terme is 'n bietjie misleidend aangesien jy nie weer glad die vraag meer as een keer (jy kan as jy wil, maar dis nie die punt hier). Hierdie terme verteenwoordig met behulp van eksponensiële gladstryking op bykomende elemente van die skatting. So met 'n eenvoudige eksponensiële gladstryking, is jy glad die vraag basis, maar met 'n dubbele-eksponensiële gladstryking jy glad die vraag basis plus die tendens, en met drie-eksponensiële gladstryking jy glad die vraag basis plus die tendens plus die seisoen. Die ander mees algemene vraag oor eksponensiële gladstryking is waar kry ek my glad faktor Daar is geen magiese antwoord hier, moet jy verskeie glad faktore toets met jou vraag data om te sien wat jy kry die beste resultate. Daar is berekeninge wat outomaties kan stel (en verandering) die smoothing faktor. Hierdie val onder die term aanpasbaar glad nie, maar jy moet versigtig wees om met hulle te wees. Daar is eenvoudig geen perfekte antwoord en jy moet nie blindelings te implementeer enige berekening sonder deeglike toetsing en ontwikkeling van 'n deeglike begrip van wat dit berekening doen. Jy moet ook hardloop what-if scenario's om te sien hoe hierdie berekeninge te reageer op veranderinge wat nog nie op die oomblik kan bestaan ​​in die vraag data wat jy gebruik vir die toets te eis. Die data voorbeeld wat ek voorheen gebruik is 'n baie goeie voorbeeld van 'n situasie waar jy regtig nodig het om 'n ander scenario's te toets. Daardie spesifieke data voorbeeld toon 'n ietwat konsekwent opwaartse neiging. Baie groot maatskappye met baie duur vooruitskatting sagteware het in groot moeilikheid in die nie-so-verre verlede toe hulle sagteware instellings wat tweaked vir 'n groeiende ekonomie didnt goed reageer wanneer die ekonomie begin stagneer of krimp. Dinge soos dit gebeur wanneer jy dit nie verstaan ​​wat jou berekeninge (sagteware) is eintlik. As hulle hul vooruitskatting stelsel verstaan, sou hulle geweet het wat hulle nodig het om in te spring en iets te verander wanneer daar skielike dramatiese veranderinge aan hul besigheid. So daar het jy dit die basiese beginsels van die eksponensiële gladstryking verduidelik. Wil jy meer oor die gebruik van eksponensiële gladstryking in 'n werklike vooruitsig, check out my boek Inventory Management Hoe weet. kopie Kopiereg. Die inhoud van InventoryOps is kopiereg beskerm en is nie beskikbaar vir herdruk. Dave Piasecki. is eienaar / operateur van Inventory Bedryf Consulting LLC. 'n raadgewende firma die verskaffing van dienste wat verband hou met voorraad beheer, materiaal hantering, en pakhuis bedrywighede. Hy het meer as 25 jaar ondervinding in die operasionele bestuur en kan bereik word deur middel van sy webwerf (www. inventoryops), waar hy verdere relevante inligting handhaaf. My BusinessEMA 8211 Hoe om dit te bereken berekening Eksponensiële bewegende gemiddelde - 'n handleiding Exponetial bewegende gemiddelde (EMA vir kort) is een van die mees gebruikte aanwysers in tegniese ontleding vandag. Maar hoe weet jy dit bereken vir jouself, met behulp van 'n papier en 'n pen of 8211 verkies 8211 'n sigbladprogram van jou keuse. Kom ons vind uit in hierdie verduideliking van EMO berekening. Berekening van Eksponensiële bewegende gemiddelde (EMA) is natuurlik outomaties gedoen deur die meeste handel en tegniese analise sagteware daar buite vandag. Hier is hoe om dit met die hand te bereken wat ook bydra tot die begrip van hoe dit werk. In hierdie voorbeeld sal ons bereken EMO vir 'die prys van 'n voorraad. Ons wil 'n 22 dag EMO wat is 'n algemene genoeg tyd vir 'n lang EMO. Die formule vir die berekening van EMO is soos volg: EMA Prys (t) k EMO (y) (1 8211 k) t vandag, y gister N aantal dae in EMO, k 2 / (N1) Gebruik die volgende stappe om 'n berekening 22 dag EMO: 1) Begin deur die berekening van k vir die gegewe tydraamwerk. 2 / (22 1) 0,0869 2) Voeg die sluitingsdatum pryse vir die eerste 22 dae saam en verdeel hulle deur 22. 3) Julle nou gereed om te begin om die eerste EMO dag deur die neem van die volgende dae (dag 23) sluitingsprys vermenigvuldig met k. dan vermeerder die vorige dae bewegende gemiddelde deur (1-k) en voeg die twee. 4) Moenie stap 3 oor en oor vir elke dag wat volg op die volle omvang van die EMO kry. Dit kan natuurlik in Excel of 'n ander spreadsheet sagteware word om die proses van die berekening van EMO semi-outomatiese maak. Om jou 'n algoritmiese beskouing oor hoe dit gedoen kan word tot stand gebring gee, sien hieronder. openbare float CalculateEMA (float todaysPrice, dryf NUMBEROFDAYS, dryf EMAYesterday) float k 2 / (NUMBEROFDAYS 1) terugkeer todaysPrice k EMAYesterday (1 8211 k) Hierdie metode sou tipies genoem van 'n lus deur jou data, so iets soek: foreach ( DailyRecord SDR in DataRecords) // noem die EMO berekening ema CalculateEMA (sdr. Close, NUMBEROFDAYS, yesterdayEMA) // die berekende ema sit in 'n skikking memaSeries. Items. Add (sdr. TradingDate, ema) // maak seker yesterdayEMA kry gevul met die EMO ons gebruik hierdie tyd om yesterdayEMA ema Let daarop dat dit 'psuedo-kode. Jy sal tipies nodig om die gister BESLOTE waarde stuur as yesterdayEMA totdat die yesterdayEMA word bereken vanaf vandag EMO. Dis gebeur eers nadat die lus meer dae het hardloop as die aantal dae wat jy jou EMO bereken vir. Vir 'n 22 dag EMO, sy net op die 23 keer in die lus en daarna dat die yesterdayEMA ema is geldig. Dit is geen big deal nie, omdat jy die data van ten minste 100 handelsdae benodig vir 'n 22 dag EMO geldig te wees. Verwante poste


No comments:

Post a Comment