Geweegde Moving Gemiddeldes: Die Basics Oor die jare, het tegnici twee probleme met die eenvoudige bewegende gemiddelde gevind. Die eerste probleem lê in die tyd van die bewegende gemiddelde (MA). Die meeste tegniese ontleders glo dat die prys aksie. die opening of sluiting voorraad prys, is nie genoeg om op te hang vir goed voorspel koop of te verkoop seine van die MA crossover aksie. Om hierdie probleem op te los, het ontleders nou meer gewig toeken aan die mees onlangse prys data deur gebruik te maak van die eksponensieel stryk bewegende gemiddelde (EMA). (Meer inligting in die ondersoek van die eksponensieel geweeg bewegende gemiddelde.) 'N voorbeeld Byvoorbeeld, met behulp van 'n 10-dag MA, sou 'n ontleder die sluitingsprys van die 10de dag te neem en vermeerder hierdie getal deur 10, die negende dag van nege, die agtste van dag tot agt en so aan tot die eerste van die MA. Sodra die totale bepaal, sou die ontleder dan verdeel die aantal deur die byvoeging van die vermenigvuldigers. As jy die vermenigvuldigers van die 10-dag MA voorbeeld te voeg, die getal is 55. Hierdie aanwyser is bekend as die lineêr geweeg bewegende gemiddelde. (Vir verwante leesstof, check Eenvoudige bewegende gemiddeldes Maak Trends uitstaan.) Baie tegnici is ferm gelowiges in die eksponensieel stryk bewegende gemiddelde (EMA). Hierdie aanwyser is verduidelik in so baie verskillende maniere waarop dit verwar studente en beleggers sowel. Miskien is die beste verduideliking kom van John J. Murphy tegniese ontleding van die finansiële markte, (uitgegee deur die New York Instituut van Finansies, 1999): Die eksponensieel stryk bewegende gemiddelde adresse beide van die probleme wat verband hou met die eenvoudige bewegende gemiddelde. Eerstens, die eksponensieel stryk gemiddelde ken 'n groter gewig aan die meer onlangse data. Daarom is dit 'n geweegde bewegende gemiddelde. Maar terwyl dit ken mindere belang vir verlede prys data, beteken dit sluit in die berekening al die data in die lewe van die instrument. Daarbenewens het die gebruiker in staat is om die gewig te pas by mindere of meerdere gewig te gee aan die mees onlangse dae prys, wat by 'n persentasie van die vorige dae waarde. Die som van beide persentasie waardes voeg tot 100. Byvoorbeeld, die laaste dae die prys kan 'n gewig van 10 (0,10), wat by die vorige dae gewig van 90 (0,90) opgedra. Dit gee die laaste dag 10 van die totale gewig. Dit sou die ekwivalent van 'n 20-dag gemiddeld deur die laaste dae die prys 'n kleiner waarde van 5 (0,05) wees. Figuur 1: eksponensieel stryk bewegende gemiddelde Bogenoemde grafiek toon die Nasdaq saamgestelde indeks van die eerste week in Augustus 2000 tot 1 Junie 2001 As jy duidelik kan sien, die EMO, wat in hierdie geval is die gebruik van die sluitingsprys data oor 'n tydperk van nege dae, het definitiewe verkoop seine op die 8 September (gekenmerk deur 'n swart afpyltjie). Dit was die dag toe die indeks het onder die vlak 4000. Die tweede swart pyl toon 'n ander af been wat tegnici eintlik verwag het nie. Die Nasdaq kon genoeg volume en belangstelling van die kleinhandel beleggers na die 3000 merk breek nie genereer. Dit dan duif weer af na onder uit by 1619,58 op April 4. Die uptrend van 12 April is gekenmerk deur 'n pyl. Hier is die indeks gesluit 1,961.46, en tegnici begin institusionele fondsbestuurders begin om af te haal 'n paar winskopies soos Cisco, Microsoft en 'n paar van die energie-verwante kwessies te sien. (Lees ons verwante artikels: Moving Gemiddelde Koeverte:. Verfyning 'n gewilde Trading Tool en bewegende gemiddelde Bounce) Geweegde Moving Gemiddelde Model definisie in die geweegde bewegende gemiddelde model (voorspelling strategie 14), is elke historiese waarde geweeg met 'n faktor van die gewig groep in die eenveranderlike voorspelling profiel. Formule vir die Geweegde Moving Gemiddelde Die geweegde bewegende gemiddelde model kan jy onlangse historiese data swaarder gewig as ouer data by die bepaling van die gemiddelde. Jy doen dit as die meer onlangse data is meer verteenwoordigend van watter toekomstige aanvraag sal wees as ouer data. Daarom is die stelsel in staat is om vinniger te reageer op 'n verandering in die vlak. Gebruik Die akkuraatheid van hierdie model hang grootliks af van jou keuse van gewig faktore. As die tyd reeks patroon verander, moet jy ook pas die gewig faktore. Wanneer die skep van 'n gewig groep, betree jy die gewig faktore as persentasies. Die som van die gewig faktore hoef nie te wees 100. Geen ex-post voorspel word bereken met hierdie voorspelling strategy. What039s die verskil tussen bewegende gemiddelde en geweegde bewegende gemiddelde A 5-tydperk bewegende gemiddelde, gebaseer op die pryse hierbo, sou wees bereken met behulp van die volgende formule: op grond van die bostaande vergelyking, het die gemiddelde prys oor die bogenoemde tydperk was 90,66. Die gebruik van bewegende gemiddeldes is 'n effektiewe metode vir die uitskakeling van sterk prysskommelings. Die sleutel beperking is dat datapunte vanaf ouer data nie anders word geweeg as datapunte naby die begin van die datastel. Dit is hier waar geweegde bewegende gemiddeldes 'n rol speel. Geweegde gemiddeldes toewys 'n swaarder gewig meer huidige data punte omdat hulle meer relevant as datapunte in die verre verlede. Die som van die gewig moet optel tot 1 (of 100). In die geval van die eenvoudige bewegende gemiddelde, is die gewigte eweredig versprei, wat is die rede waarom hulle nie in die tabel hierbo getoon. Sluitingsprys van AAPL Die geweegde gemiddelde is bereken deur vermenigvuldig die gegewe prys deur sy verwante gewig en dan die WHALM waardes. In die voorbeeld hierbo, sal die geweegde 5-daagse bewegende gemiddelde 90,62. In hierdie voorbeeld is die onlangse data punt die hoogste gewig uit 'n arbitrêre 15 punte. Jy kan die waardes weeg uit enige waarde goeddink jou. Die laer waarde van die geweegde gemiddelde persentasie van relatief tot die eenvoudige gemiddelde dui die onlangse verkoop druk kan meer betekenisvol as 'n paar handelaars verwag word. Vir die meeste handelaars, die gewildste keuse by die gebruik van geweeg bewegende gemiddeldes is om 'n hoër gewig gebruik vir die afgelope waardes. (Vir meer inligting, kyk na die bewegende gemiddelde Tutoriaal) Lees meer oor die verskil tussen eksponensiële bewegende gemiddeldes en geweegde bewegende gemiddeldes, twee glad aanwysers dat. Lees Antwoord Die enigste verskil tussen hierdie twee tipes bewegende gemiddelde is die sensitiwiteit elkeen toon veranderinge in die gebruik van data. Lees Antwoord Meer inligting oor die berekening en interpretasie van geweegde gemiddeldes, insluitend hoe om 'n geweegde gemiddelde bereken met behulp van Microsoft. Lees Antwoord Sien waarom bewegende gemiddeldes het bewys voordelig vir handelaars en ontleders en nuttig te wees wanneer dit toegepas word om die prys kaarte en. Lees Antwoord Leer hoe handelaars en beleggers gebruik geweegde Alpha om momentum van 'n aandele prys te identifiseer en of pryse hoër sal beweeg. Lees Antwoord inligting oor 'n paar van die inherente beperkings en moontlike misapplications van bewegende gemiddelde ontleding binne tegniese voorraad. Lees Beantwoord 'n voorspelling Berekening Voorbeelde A.1 Voorspelling Compute wyse Twaalf metodes van die berekening van voorspellings is beskikbaar. Die meeste van hierdie metodes te voorsien vir 'n beperkte gebruiker beheer. Byvoorbeeld, kan die gewig geplaas op onlangse historiese data of die datum bereik van historiese data gebruik in die berekeninge word vermeld. Die volgende voorbeelde wys die prosedure te kan uitvoer vir elk van die beskikbare voorspelling metodes, gegee 'n identiese stel historiese data. Die volgende voorbeelde gebruik dieselfde 2004 en 2005 verkope data na 'n voorspelling van die verkoop 2006 te produseer. Benewens die voorspelling berekening, elke voorbeeld sluit 'n gesimuleerde 2005 voorspelling vir 'n drie maande holdout tydperk (verwerking opsie 19 3) wat dan gebruik word vir persent van akkuraatheid en beteken absolute afwyking berekeninge (werklike verkope in vergelyking met gesimuleerde voorspelling). A.2 voorspellings oor die prestasie Evalueringskriteria Afhangende van jou keuse van verwerking opsies en op die tendense en patrone bestaande in die verkope data, sal 'n paar voorspellings metodes beter as ander vir 'n gegewe historiese datastel te voer. 'N vooruitskatting metode wat geskik is vir 'n produk mag nie geskik is vir 'n ander produk. Dit is ook onwaarskynlik dat 'n vooruitskatting metode wat goeie resultate lewer in 'n stadium van 'n produkte lewensiklus toepaslike bly deur die hele lewensiklus. Jy kan kies tussen twee metodes om die huidige prestasie van die voorspelling metodes te evalueer. Dit is gemiddelde absolute afwyking (MAD) en Persent van akkuraatheid (POA). Beide van hierdie prestasie-evaluering metodes vereis historiese verkope data vir 'n gebruiker spesifieke tydperk. Hierdie tydperk van die tyd genoem word 'n holdout tydperk of tydperke beste passing (PBF). Die data in hierdie tydperk word gebruik as die grondslag vir die aanbeveling van watter een van die voorspelling metodes om te gebruik in die maak van die volgende voorspelling projeksie. Hierdie aanbeveling is spesifiek vir elke produk, en kan verander van een voorspelling generasie na die volgende. Die twee voorspelling prestasie-evaluering metodes word gedemonstreer in die bladsye wat volg op die voorbeelde van die twaalf voorspelling metodes. A.3 Metode 1 - Gespesifiseerde Persent teenoor verlede jaar Hierdie metode vermeerder verkope data van die vorige jaar deur 'n gebruiker gespesifiseer faktor byvoorbeeld 1.10 vir 'n 10 toename, of 0,97 vir 'n 3 afname. Vereis verkope geskiedenis: Een jaar vir die berekening van die voorspelling plus die gebruiker gespesifiseerde aantal tydperke vir die evaluering van voorspellings oor die prestasie (verwerking opsie 19). A.4.1 Voorspelling Berekening Range van verkope geskiedenis om te gebruik in die berekening van groei faktor (verwerking opsie 2a) 3 in hierdie voorbeeld. Som die laaste drie maande van 2005: 114 119 137 370 Sum dieselfde drie maande van die vorige jaar: 123 139 133 395 Die berekende faktor 370/395 0,9367 Bereken die voorspellings: Januarie 2005 verkoop 128 0,9367 119,8036 of ongeveer 120 Februarie 2005 verkope 117 0.9367 109.5939 of sowat 110 Maart 2005 verkoop 115 0,9367 107,7205 of oor 108 A.4.2 Gesimuleerde Voorspelling Berekening Som die drie maande van 2005 voor holdout tydperk (Julie Augustus, September): 129 140 131 400 Sum dieselfde drie maande vir die vorige jaar: 141 128 118 387 die berekende faktor 400/387 1,033591731 bereken gesimuleerde vooruitsig: Oktober 2004 verkoop 123 1,033591731 127,13178 November 2004 verkope 139 1,033591731 143,66925 Desember 2004 verkoop 133 1,033591731 137,4677 A.4.3 Persent van akkuraatheid Berekening POA ( 127,13178 143,66925 137,4677) / (114 119 137) 100 408,26873 / 370 100 110,3429 A.4.4 Gemiddelde Absolute Afwyking Berekening MAD (127,13178-114 143,66925-119 137.4677- 137) / 3 (13,13178 24,66925 0,4677) / 3 12,75624 A.5 Metode 3 - Verlede jaar vanjaar Hierdie metode kopieë verkoop data van die vorige jaar tot die volgende jaar. Vereis verkope geskiedenis: Een jaar vir die berekening van die voorspelling plus die aantal tydperke vermeld vir die evaluering van voorspellings oor die prestasie (verwerking opsie 19). A.6.1 Voorspelling Berekening Aantal periodes in die gemiddelde (verwerking opsie 4a) 3 ingesluit moet word in hierdie voorbeeld vir elke maand van die voorspelling, die gemiddelde van die vorige drie maande data. Januarie vooruitsig: 114 119 137 370, 370/3 123,333 of 123 Februarie vooruitsig: 119 137 123 379, 379/3 126,333 of 126 Maart vooruitsig: 137 123 126 379, 386/3 128,667 of 129 A.6.2 Gesimuleerde Voorspelling Berekening Oktober 2005 verkope (129 140 131) / 3 133,3333 November 2005 verkope (140 131 114) / 3 128,3333 Desember 2005 verkoop (131 114 119) / 3 121,3333 A.6.3 Persent van akkuraatheid Berekening POA (133,3333 128,3333 121,3333) / (114 119 137) 100 103,513 A.6.4 Gemiddelde Absolute Afwyking Berekening MAD (133,3333-114 128,3333-119 121,3333-137) / 3 14,7777 A.7 Metode 5 - Lineêre die aanpassing Lineêre die aanpassing bereken 'n tendens wat gebaseer is op twee verkope geskiedenis datapunte. Dié twee punte definieer 'n reguit tendens lyn wat geprojekteer in die toekoms. Gebruik hierdie metode met omsigtigheid, as lang afstand voorspellings is aged deur klein veranderinge in net twee datapunte. Vereis verkope geskiedenis: Die aantal periodes in regressie (verwerking opsie 5a), plus 1 plus die aantal tydperke vir die evaluering van voorspellings oor die prestasie (verwerking opsie 19) in te sluit. A.8.1 Voorspelling Berekening Aantal periodes in regressie in te sluit (verwerking opsie 6a) 3 in hierdie voorbeeld vir elke maand van die voorspelling, voeg die toename of afname in die vermelde tydperke voor tydperk die vorige tydperk holdout. Gemiddelde van die vorige drie maande (114 119 137) / 3 123,3333 Opsomming van die vorige drie maande met gewig beskou (114 1) (119 2) (137 3) 763 verskil tussen die waardes 763-123,3333 (1 2 3) 23 verhouding (12 22 32) - 2 14 Maart - 2 Desember VALUE1 verskil / verhouding 23/2 11,5 VALUE2 Gemiddeld - waarde1 verhouding 123,3333-11,5 2 100,3333 Voorspelling (1 N) waarde1 waarde2 4 11.5 100,3333 146,333 of 146 Voorspelling 5 11.5 100,3333 157,8333 of 158 voorspel 6 11.5 100,3333 169,3333 of 169 A.8.2 Gesimuleerde Voorspelling Berekening Oktober 2004 verkope: Gemiddeld van die vorige drie maande (129 140 131) / 3 133,3333 Opsomming van die vorige drie maande met gewig beskou (129 1) (140 2) (131 3) 802 verskil tussen die waardes 802-133,3333 (1 2 3) 2 verhouding (12 22 32) - 2 14 Maart - 2 Desember VALUE1 verskil / verhouding 02/02 1 VALUE2 Gemiddeld - waarde1 verhouding 133,3333-1 2 131,3333 Voorspelling (1 N) waarde1 waarde2 4 1 131,3333 135,3333 November 2004 verkope gemiddeld van die vorige drie maande (140 131 114) / 3 128,3333 Opsomming van die vorige drie maande met gewig beskou (140 1) (131 2) (114 3) 744 verskil tussen die Waarden 744-128,3333 (1 2 3) -25,9999 VALUE1 verskil / verhouding -25,9999 / 2 -12,9999 VALUE2 Gemiddeld - waarde1 verhouding 128,3333 - (-12,9999) 2 154,3333 Voorspelling 4 -12,9999 154,3333 102,3333 Desember 2004 verkoop gemiddeld van die vorige drie maande ( 131 114 119) / 3 121,3333 Opsomming van die vorige drie maande met gewig beskou (131 1) (114 2) (119 3) 716 verskil tussen die waardes 716-121,3333 (1 2 3) -11,9999 VALUE1 verskil / verhouding -11,9999 / 2 -5,9999 VALUE2 Gemiddeld - waarde1 verhouding 121,3333 - (-5,9999) 2 133,3333 Voorspelling 4 (-5,9999) 133,3333 109,3333 A.8.3 Persent van akkuraatheid Berekening POA (135,33 102,33 109,33) / (114 119 137) 100 93,78 A.8.4 Gemiddelde Absolute afwyking Berekening MAD (135,33-114 102,33-119 109,33-137) / 3 21,88 A.9 Metode 7 - tweede graad aanpassing lineêre regressie bepaal waardes vir a en b in die vooruitsig formule Y 'n bX met die doel van pas 'n reguit lyn te die verkope geskiedenis data. Tweede graad benadering is soortgelyk. Maar hierdie metode bepaal waardes vir a, b, en c in die vooruitsig formule Y 'n bX cX2 met die doel van pas 'n kurwe na die verkope geskiedenis data. Hierdie metode dalk mag wees bruikbare wanneer 'n produk is in die oorgang tussen stadiums van 'n lewensiklus. Byvoorbeeld, wanneer 'n nuwe produk beweeg van inleiding tot groeistadiums, kan die verkope tendens versnel. As gevolg van die tweede orde termyn, kan die voorspelling vinnig nader oneindigheid of daal tot nul (afhangende van of koëffisiënt c positief of negatief). Daarom is hierdie metode is net nuttig in die kort termyn. Voorspelling spesifikasies: Die formules vind a, b, en c aan 'n kromme presies drie punte aan te pas. Jy spesifiseer N in die verwerking opsie 7a, die aantal tydperke van data te versamel in elk van die drie punte. In hierdie voorbeeld N 3. Daarom werklike verkope data vir April tot Junie is gekombineer in die eerste punt, Q1. Julie tot September word bymekaar getel om die 2de kwartaal skep, en Oktober tot Desember som tot Q3. Die kurwe sal toegerus wees om die drie waardes Q1, Q2, en Q3. Vereis verkope geskiedenis: 3 N periodes vir die berekening van die voorspelling plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (PBF). Aantal periodes om (verwerking opsie 7a) 3 in hierdie voorbeeld gebruik van die vorige (3 N) maande in drie maande blokke sluit in: Q1 (April-Junie) 125 122 137 384 Q2 (Julie-September) 129 140 131 400 Q3 ( Oktober-Desember) 114 119 137 370 die volgende stap behels die berekening van die drie koëffisiënte a, b, en C om gebruik te word in die voorspelling formule Y 'n bX cX2 (1) Q1 n bX cX2 (waar X 1) ABC (2) Q2 'n bX cX2 (waar X 2) 'n 2b 4C (3) Q3 n bX cX2 (waar X 3) 'n 3b 9c Los die drie vergelykings gelyktydig te b, a, en c te vind: Trek vergelyking (1) van vergelyking (2) en op te los vir b (2) - (1) Q2 - Q1 b 3c plaasvervanger hierdie vergelyking vir b in vergelyking (3) (3) Q3 n 3 (Q2 - Q1) - 3c c slotte, vervang hierdie vergelykings vir a en b in vergelyking (1) Q3 - 3 (Q2 - Q1) (Q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2) / 2 Die tweede graad aanpassing metode bereken a, b, en c soos volg: 'n Q3 - 3 (Q2 - Q1) 370 - 3 (400-384) 322 c (Q3 - Q2) (Q1 - Q2) / 2 (370-400) (384-400) / 2 -23 b (Q2 - Q1) - 3c (400-384) - (3 -23) 85 Y 'n bX cX2 322 85 X (-23) X2 Januarie deur middel van Maart voorspel (X4): (322 340-368) / 3 294/3 98 per periode April deur middel Junie voorspelling (X5): (322 425-575) / 3 57,333 of 57 per periode Julie deur middel van September voorspelling (X6): (322 510-828) / 3 1.33 of 1 per periode Oktober deur middel van Desember (X7) (322 595-1127 / 3 -70 A.9.2 Gesimuleerde Voorspelling Berekening Oktober, November en Desember 2004 verkope: Q1 (Januarie-Maart) 360 Q2 (April-Junie) 384 Q3 (Julie-September) 400 'n 400-3 (384-360) 328 c (400-384) (360-384) / 2 -4 b (384-360) - 3 (-4) 36 328 36 4 (-4) 16/3 136 A.9.3 Persent van akkuraatheid Berekening POA (136 136 136) / (114 119 137) 100 110,27 A.9.4 Gemiddelde Absolute Afwyking Berekening MAD (136 - 114 136 - 119 136 - 137) / 3 13,33 A.10 Metode 8 - Veelsydige Metode Die buigbare metode (persent oor N maande voor) is soortgelyk aan Metode 1, persent oor verlede jaar. Beide metodes vermeerder verkope data uit 'n vorige tydperk deur 'n gebruiker gespesifiseer faktor, dan projek wat lei na die toekoms. In die persent meer as verlede jaar metode, is die projeksie gebaseer op data van die dieselfde tydperk in die vorige jaar. Die buigbare metode voeg die vermoë om 'n tydperk anders as die ooreenstemmende tydperk verlede jaar om te gebruik as die basis vir die berekening spesifiseer. Vermenigvuldigingsfaktor. Byvoorbeeld, spesifiseer 1.15 in die verwerking opsie 8b die vorige verkope geskiedenis data te verhoog deur 15. Base tydperk. Byvoorbeeld, sal N 3 veroorsaak dat die eerste skatting word wat gebaseer is op verkope data in Oktober 2005. Minimum verkope geskiedenis: Die gebruiker gespesifiseerde aantal periodes terug na die basis tydperk, plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie ( PBF). A.10.4 Mean Absolute Afwyking Berekening MAD (148-114 161-119 151-137) / 3 30 A.11 Metode 9 - Geweegde bewegende gemiddelde geweegde bewegende gemiddelde (WBA) metode is soortgelyk aan Metode 4, bewegende gemiddelde (MA) . Maar met die Geweegde bewegende gemiddelde jy kan ongelyke gewigte toewys aan die historiese data. Die metode bereken 'n geweegde gemiddelde van die afgelope verkope geskiedenis te kom by 'n projeksie vir die kort termyn. Meer onlangse data word gewoonlik toegeken 'n groter gewig as ouer data, so dit maak WBG meer reageer op veranderinge in die vlak van verkope. Maar voorspel vooroordeel en sistematiese foute nog steeds plaasvind wanneer die produk verkoop geskiedenis uitbeeld sterk tendens of seisoenale patrone. Hierdie metode werk beter vir 'n kort reeks voorspellings van volwasse produkte eerder as vir produkte in die groei of veroudering stadiums van die lewensiklus. N die aantal periodes van verkope geskiedenis om te gebruik in die vooruitsig berekening. Byvoorbeeld, spesifiseer N 3 in die verwerking opsie 9a tot die mees onlangse drie tydperke gebruik as die grondslag vir die projeksie in die volgende tydperk. 'N Groot waarde vir N (soos 12) vereis meer verkope geskiedenis. Dit lei tot 'n stabiele vooruitsig, maar sal stadig om skofte te erken in die vlak van verkope wees. Aan die ander kant, sal 'n klein waarde vir N (soos 3) vinniger om skofte in die vlak van verkope te reageer, maar die voorspelling kan so wyd dat produksie kan nie reageer op die verskille wissel. Die gewig wat aan elk van die historiese data tydperke. Die opgedra gewigte moet totaal tot 1.00. Byvoorbeeld, wanneer n 3, toewys gewigte van 0.6, 0.3, en 0.1, met die mees onlangse data ontvangs van die grootste gewig. Minimum vereiste verkope geskiedenis: N plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (PBF). MAD (133,5-114 121,7-119 118,7-137) / 3 13.5 A.12 Metode 10 - Lineêre Smoothing Hierdie metode is soortgelyk aan Metode 9, Geweegde bewegende gemiddelde (WBA). Maar in plaas van na willekeur toeken gewigte aan die historiese data, 'n formule word gebruik om gewig wat lineêr afneem toewys en som tot 1.00. Die metode bereken dan 'n geweegde gemiddelde van die afgelope verkope geskiedenis te kom by 'n projeksie vir die kort termyn. As geld vir alle lineêre bewegende gemiddelde vooruitskatting tegnieke, voorspelling vooroordeel en sistematiese foute kom voor wanneer die produk verkoop geskiedenis uitbeeld sterk tendens of seisoenale patrone. Hierdie metode werk beter vir 'n kort reeks voorspellings van volwasse produkte eerder as vir produkte in die groei of veroudering stadiums van die lewensiklus. N die aantal periodes van verkope geskiedenis om te gebruik in die vooruitsig berekening. Dit is vermeld in die verwerking opsie 10a. Byvoorbeeld, spesifiseer N 3 in die verwerking opsie 10b tot die mees onlangse drie tydperke gebruik as die grondslag vir die projeksie in die volgende tydperk. Die stelsel sal outomaties die gewigte na die historiese data wat lineêr afneem en som toewys aan 1.00. Byvoorbeeld, wanneer n 3, die stelsel sal gewigte van 0,5, 0,3333, en 0.1 wys, met die mees onlangse data ontvangs van die grootste gewig. Minimum vereiste verkope geskiedenis: N plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (PBF). A.12.1 Voorspelling Berekening Aantal periodes in glad gemiddelde (verwerking opsie 10a) in te sluit 3 in hierdie voorbeeld verhouding vir een periode voor 3 / (N2 N) / 2 3 / (32 3) / 2 3/6 0,5 verhouding vir twee tydperke voor 2 / (N2 N) / 2 2 / (32 3) / 2 2/6 0,3333 .. verhouding vir drie periodes voor 1 / (N2 N) / 2 1 / (32 3) / 2 1/6 0,1666. . Januarie vooruitsig: 137 0.5 119 1/3 114 1/6 127,16 of 127 Februarie vooruitsig: 127 0.5 137 1/3 119 1/6 129 Maart vooruitsig: 129 0.5 127 1/3 137 1/6 129,666 of 130 A.12.2 gesimuleerde Voorspelling Berekening Oktober 2004 verkoop 129 1/6 140 2/6 131 3/6 133,6666 November 2004 verkope 140 1/6 131 2/6 114 3/6 124 Desember 2004 verkoop 131 1/6 114 2/6 119 3/6 119,3333 A.12.3 Persent van akkuraatheid Berekening POA (133,6666 124 119,3333) / (114 119 137) 100 101,891 A.12.4 Gemiddelde Absolute Afwyking Berekening MAD (133,6666-114 124 - 119 119,3333-137) / 3 14,1111 A.13 Metode 11 - eksponensiële Gladstryking Hierdie metode is soortgelyk aan metode 10, Lineêre Smoothing. In Lineêre Smoothing ken die stelsel gewigte aan die historiese data wat lineêr afneem. In eksponensiële gladstryking, die stelsel wys gewigte wat eksponensieel verval. Die eksponensiële gladstryking vooruitskatting vergelyking is: voorspel 'n (Vorige werklike verkope) (1 - a) vorige skatting Die voorspelling is 'n geweegde gemiddeld van die werklike verkope van die vorige tydperk en die voorspelling van die vorige tydperk. n is die gewig van toepassing op die werklike verkope vir die vorige tydperk. (1 - a) is die toepassing op die voorspelling vir die vorige tydperk gewig. Geldige waardes vir 'n verskeidenheid 0-1, en val gewoonlik tussen 0.1 en 0.4. Die som van die gewigte is 1.00. 'n (1 - a) 1 Jy moet 'n waarde toeken vir die glad konstante, 'n. As jy nie waardes vir die glad konstante hoef te ken, die stelsel bereken 'n veronderstelde waarde wat gebaseer is op die aantal periodes van verkope geskiedenis wat in die verwerking opsie 11a. n die smoothing konstante gebruik in die berekening van die reëlmatige gemiddelde vir die algemene vlak of omvang van verkope. Geldige waardes vir 'n verskeidenheid van 0 tot 1. N die reeks van verkope geskiedenis data in die berekeninge te sluit. Oor die algemeen 'n jaar van verkope geskiedenis data is voldoende om die algemene vlak van verkope te skat. Vir hierdie voorbeeld, 'n klein waarde vir N (N 3) is gekies om die handleiding berekeninge wat nodig is om die resultate te verifieer verminder. Eksponensiële gladstryking kan 'n voorspelling gebaseer op so min as een historiese data punt te genereer. Minimum vereiste verkope geskiedenis: N plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (PBF). A.13.1 Voorspelling Berekening Aantal periodes in glad gemiddelde (verwerking opsie 11a) 3 sluit, en alfa faktor (verwerking opsie 11b) leeg in hierdie voorbeeld 'n faktor vir die oudste verkope data 2 / (11), of 1 toe Alpha is gespesifiseerde n faktor vir die 2de verkope data oudste 2 / (12), of alfa wanneer alfa 'n faktor is wat vir die 3de oudste verkope data 2 / (13), of alfa wanneer alfa 'n faktor is wat vir die mees onlangse verkope data 2 / (1n), of alfa wanneer alfa gespesifiseer November Sm. Gem. 'n (Oktober Werklike) (1 - a) Oktober Sm. Gem. 1 114 0 0 114 Desember Sm. Gem. 'n (November Werklike) (1 - a) November Sm. Gem. 03/02 119 1/3 114 117,3333 Januarie voorspel '(Desember Werklike) (1 - a) Desember Sm. Gem. 2/4 137 2/4 117,3333 127,16665 of 127 Februarie Voorspelling Januarie Voorspelling 127 Maart Voorspelling Januarie Voorspelling 127 A.13.2 Gesimuleerde Voorspelling Berekening Julie 2004 Sm. Gem. 02/02 129 129 Augustus Sm. Gem. 03/02 140 1/3 129 136,3333 September Sm. Gem. 2/4 131 2/4 136,3333 133,6666 Oktober 2004 verkope September Sm. Gem. 133.6666 Augustus 2004 Sm. Gem. 02/02 140 140 September Sm. Gem. 03/02 131 1/3 140 134 Oktober Sm. Gem. 2/4 114 2/4 134 124 November 2004 verkope September Sm. Gem. 124 September 2004 Sm. Gem. 02/02 131 131 Oktober Sm. Gem. 03/02 114 1/3 131 119,6666 November Sm. Gem. 2/4 119 2/4 119,6666 119,3333 Desember 2004 verkope September Sm. Gem. 119,3333 A.13.3 Persent van akkuraatheid Berekening POA (133,6666 124 119,3333) / (114 119 137) 100 101,891 A.13.4 Gemiddelde Absolute Afwyking Berekening MAD (133,6666-114 124 - 119 119,3333-137) / 3 14,1111 A.14 Metode 12 - eksponensiële Smoothing met Trend en Seisoenaliteit Hierdie metode is soortgelyk aan metode 11, eksponensiële Gladstryking in daardie 'n reëlmatige gemiddelde bereken word. Maar Metode 12 sluit ook 'n term in die vooruitskatting vergelyking met 'n reëlmatige tendens te bereken. Die voorspelling is saamgestel uit 'n reëlmatige het gemiddeld aangepas vir 'n lineêre tendens. Wanneer vermeld in die opsie verwerking, is die voorspelling ook aangepas vir die seisoen. n die smoothing konstante gebruik in die berekening van die reëlmatige gemiddelde vir die algemene vlak of omvang van verkope. Geldige waardes vir Alpha wissel van 0 tot 1. b die smoothing konstante gebruik in die berekening van die reëlmatige gemiddelde vir die tendens komponent van die skatting. Geldige waardes vir beta wissel van 0 tot 1. Of 'n seisoenale indeks is van toepassing op die voorspelling A en B is onafhanklik van mekaar. Hulle hoef nie te voeg tot 1.0. Minimum vereiste verkope geskiedenis: twee jaar plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (PBF). Metode 12 gebruik twee eksponensiële gladstryking vergelykings en 'n eenvoudige gemiddelde tot 'n reëlmatige gemiddelde, 'n reëlmatige tendens, en 'n eenvoudige gemiddelde seisoenale faktor te bereken. A.14.1 Voorspelling Berekening A) 'n eksponensieel stryk gemiddelde MAD (122,81-114 133,14-119 135,33-137) / 3 8.2 A.15 Evaluering van die voorspellings Jy kan vooruitskatting metodes kies om soveel as twaalf voorspellings vir elke produk te genereer. Elke vooruitskatting metode sal waarskynlik 'n effens ander projeksie te skep. Wanneer duisende produkte word voorspel, is dit onprakties om 'n subjektiewe besluit oor watter een van die voorspellings te gebruik in jou planne vir elk van die produkte te maak. Die stelsel evalueer outomaties prestasie vir elk van die voorspelling metodes wat jy kies, en vir elk van die voorspel produkte. Jy kan kies tussen twee prestasiekriteria, Gemiddelde Absolute Afwyking (MAD) en Persent van akkuraatheid (POA). MAD is 'n maatstaf van voorspelling fout. POA is 'n maatstaf van voorspelling vooroordeel. Beide van hierdie prestasie-evaluering tegnieke vereis werklike verkope geskiedenis data vir 'n gebruiker spesifieke tydperk. Hierdie tydperk van die onlangse geskiedenis is bekend as 'n holdout tydperk of tydperke beste passing (PBF). Om die prestasie van 'n vooruitskatting metode meet, gebruik die voorspelling formules om 'n voorspelling vir die historiese holdout tydperk na te boots. Daar sal gewoonlik wees verskille tussen werklike verkope data en die gesimuleerde voorspelling vir die holdout tydperk. Wanneer verskeie voorspelling metodes gekies word, dieselfde proses vind vir elke metode. Veelvuldige voorspellings word bereken vir die holdout tydperk, en in vergelyking met die bekende verkope geskiedenis vir dieselfde tydperk. Die vooruitskatting metode vervaardiging van die beste wedstryd (beste passing) tussen die voorspelling en die werklike verkope gedurende die holdout tydperk word aanbeveel vir gebruik in jou planne. Hierdie aanbeveling is spesifiek vir elke produk, en kan verander van een voorspelling generasie na die volgende. A.16 Mean Absolute Afwyking (MAD) MAD is die gemiddelde (of gemiddelde) van die absolute waardes (of omvang) van die afwykings (of foute) tussen werklike en voorspelde data. MAD is 'n maatstaf van die gemiddelde grootte van foute te verwag, gegewe 'n vooruitskatting metode en data geskiedenis. Omdat absolute waardes word gebruik in die berekening, moenie positiewe foute nie kanselleer negatiewe foute. Wanneer vergelyk verskeie voorspelling metodes, het die een met die kleinste MAD getoon die mees betroubare vir daardie produk vir daardie holdout tydperk te wees. Wanneer die voorspelling is onbevooroordeelde en foute is normaal verdeel, daar is 'n eenvoudige wiskundige verhouding tussen MAD en twee ander algemene maatstawwe van verspreiding, gemiddeldes en standaardafwykings Squared Fout: A.16.1 Persent van akkuraatheid (POA) persent van akkuraatheid (POA) is 'n mate van voorspelling vooroordeel. Wanneer voorspellings is konsekwent te hoog, voorraad ophoop en voorraad koste styg. Wanneer voorspellings is konsekwent twee lae, is voorrade verteer en kliëntediens weier. 'N voorspelling wat 10 eenhede te laag is, dan 8 eenhede te hoog is, dan 2 eenhede te hoog is, sal 'n onbevooroordeelde voorspelling wees. Die positiewe dwaling van 10 is gekanselleer deur negatiewe foute van 8 en 2. Fout Werklike - Voorspelling Wanneer 'n produk kan gestoor word in voorraad, en wanneer die voorspelling is onbevooroordeelde, kan 'n klein hoeveelheid van veiligheid voorraad gebruik word om die foute te buffer. In hierdie situasie, is dit nie so belangrik om voorspelling foute uit te skakel as dit is om onbevooroordeelde voorspellings te genereer. Maar in diens nywerhede, sal die bogenoemde situasie word beskou as drie foute. Die diens sal word te min personeel in die eerste tydperk, dan veel personeel vir die volgende twee tydperke. In dienste, die grootte van voorspelling foute is gewoonlik meer belangrik as wat voorspel vooroordeel. Die opsomming oor die holdout tydperk kan positiewe foute negatiewe foute te kanselleer. Wanneer die totaal van werklike verkope die totaal van vooruitskatting verkope oorskry, die verhouding is groter as 100. Natuurlik, dit is onmoontlik meer as 100 akkuraat te wees. Wanneer 'n voorspelling is onbevooroordeelde, sal die POA verhouding Wees daarom 100. Dit is meer wenslik wees 95 akkuraat as om 110 akkurate. Die POA kriteria kies die vooruitskatting metode wat 'n POA verhouding naaste aan 100. Scripting op hierdie bladsy verhoog inhoud navigasie het, maar nie die inhoud in enige way. moving gemiddelde gemiddeld van tydreeksdata te verander (waarnemings eweredig gespasieerde in tyd) van 'n paar agtereenvolgende tydperke. Genoem beweeg omdat dit voortdurend recomputed as nuwe data beskikbaar raak, dit vorder deur die val van die vroegste waarde en die toevoeging van die jongste waarde. Byvoorbeeld, kan die bewegende gemiddelde van ses maande verkoop word bereken deur die gemiddelde van verkope van Januarie tot Junie, dan is die gemiddeld van verkope van Februarie tot Julie dan Maart tot Augustus en so aan. Bewegende gemiddeldes (1) verminder die effek van tydelike verskille in data, (2) die verbetering van die passing van data om 'n lyn ( 'n proses genaamd smoothing) om die data in tendens duideliker wys, en (3) na vore te bring enige waarde bo of onder die tendens. As jy iets met 'n baie hoë variansie is die berekening van die beste wat jy kan in staat wees om te doen, is uit die bewegende gemiddelde. Ek wou weet wat die bewegende gemiddelde was van die data, so ek sal 'n beter begrip van hoe ons doen het. As jy probeer om uit te vind 'n paar nommers wat verander dikwels die beste wat jy kan doen is om te bereken die bewegende gemiddelde. Die beste van BusinessDictionary, daaglikse afgelewer
No comments:
Post a Comment